Loose Coupling of Wearable-Based INSs with Automatic Heading Evaluation

نویسندگان

  • Dina Bousdar Ahmed
  • Estefania Munoz Diaz
چکیده

Position tracking of pedestrians by means of inertial sensors is a highly explored field of research. In fact, there are already many approaches to implement inertial navigation systems (INSs). However, most of them use a single inertial measurement unit (IMU) attached to the pedestrian's body. Since wearable-devices will be given items in the future, this work explores the implementation of an INS using two wearable-based IMUs. A loosely coupled approach is proposed to combine the outputs of wearable-based INSs. The latter are based on a pocket-mounted IMU and a foot-mounted IMU. The loosely coupled fusion combines the output of the two INSs not only when these outputs are least erroneous, but also automatically favoring the best output. This approach is named smart update. The main challenge is determining the quality of the heading estimation of each INS, which changes every time. In order to address this, a novel concept to determine the quality of the heading estimation is presented. This concept is subject to a patent application. The results show that the position error rate of the loosely coupled fusion is 10 cm/s better than either the foot INS's or pocket INS's error rate in 95% of the cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Radio Waves on the Quality and Safety of Wearable Sensors in Healthcare

The industrial Internet of Things (IoT) is aiming to interconnect humans, machines, materials, processes and services in a network. Wireless Sensor Network (WSN) comprises the less power consuming, light weight and effective Sensor Nodes (SNs) for higher network performance. Radio Frequency Identification (RFID) and sensor networks are both wireless technologies that provide limitless future po...

متن کامل

Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoo...

متن کامل

Simulation of Store Separation using Low-cost CFD with Dynamic Meshing

The simulation of the store separation using the automatic coupling of dynamic equations with flow aerodynamics is addressed. The precision and cost (calculation time) were considered as comparators. The method used in the present research decreased the calculation cost while limiting the solution error within a specific and tolerable interval. The methods applied to model the aerodynamic force...

متن کامل

Requirements for Designing a Wearable Smart Blanket System for Monitoring Patients in Ambulance

Introduction: Nowadays, smart systems and advanced tools such as wearable systems have grown significantly in order to monitor patients and keep their condition under control. The aim of this study was to determine the requirements for designing a wearable smart blanket system (WSBS) to monitor patients in ambulance instantaneously. Method: After reviewing the characteristics of wearable system...

متن کامل

Requirements for Designing a Wearable Smart Blanket System for Monitoring Patients in Ambulance

Introduction: Nowadays, smart systems and advanced tools such as wearable systems have grown significantly in order to monitor patients and keep their condition under control. The aim of this study was to determine the requirements for designing a wearable smart blanket system (WSBS) to monitor patients in ambulance instantaneously. Method: After reviewing the characteristics of wearable system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017